NANOVEA Jr25

PORTABLE NON-CONTACT
3D OPTICAL PROFILER

ULTIMATE VERSATILITY

Designed with Chromatic Light technology, which measures physical wavelength, Jr25 Profiler provides the highest accuracy on any roughness, any form, any material. Transparent or opaque.

FIRST TRULY PORTABLE

NON-CONTACT PROFILER

LAB QUALITY RESULTS

ON THE GO

DIFFICULT ANGLES

POSE NO PROBLEM

UNDER 5.5 kg
WEIGHT

X-Y STAGE TRAVEL

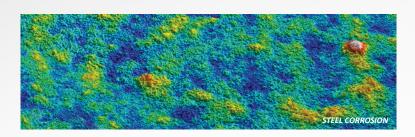
25 x 25 mm

ZAXIS

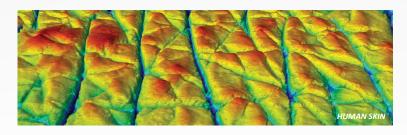
30 mm Manual

X-YMAX SPEED

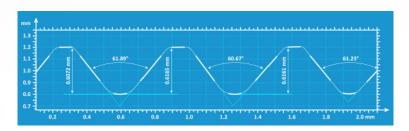
20 mm/s

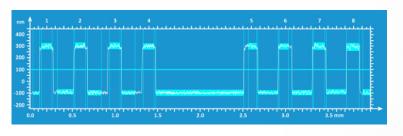

THE POWER OF CHROMATIC LIGHT

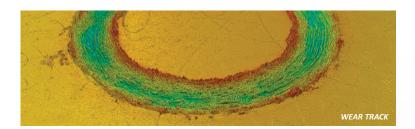
NANOVEA's Non-Contact Optical Profilers are the ideal upgrade from traditional contact stylus and laser profilometers.

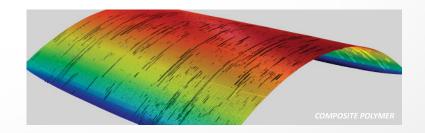


2D & 3D NON-CONTACT


SURFACE MEASUREMENTS


ROUGHNESS & FINISH


TEXTURE


GEOMETRY & SHAPE

STEP HEIGHT & THICKNESS

VOLUME & AREA

FLATNESS & WARPAGE

ANY MATERIAL. TRANSPARENT, REFLECTIVE OR DARK

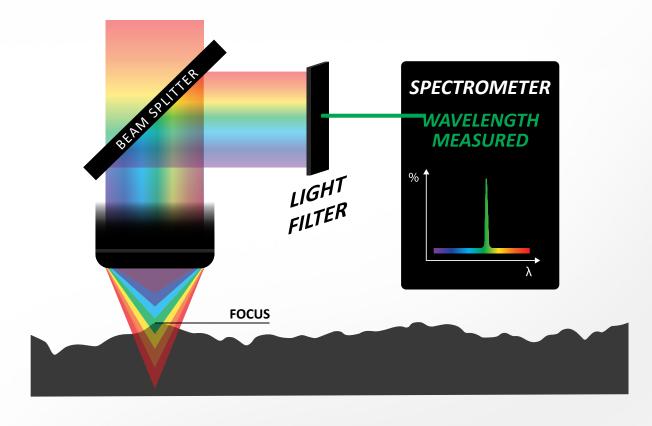
STANDARD SENSOR

SINGLE POINT

•	PS1	PS2	PS3	PS4	PS5	PS6
MAX HEIGHT RANGE	110μm —	300μm ——	1.1mm —	3.5mm —	10mm ——	24mm
WORKING DISTANCE	3.35mm —	10.8mm —	12.0mm —	16.2mm —	25.9mm —	20mm
LATERAL X-Y ACCURACY ———	0.9μm ——	1.2μm ——	2.0μm ——	3.0μm ——	7.0μm ——	8.0µm
HEIGHT REPEATABILITY*	1.2nm ——	2.2nm ——	3.4nm ——	17nm ——	31nm ——	41nm

up to 87° max surface angle

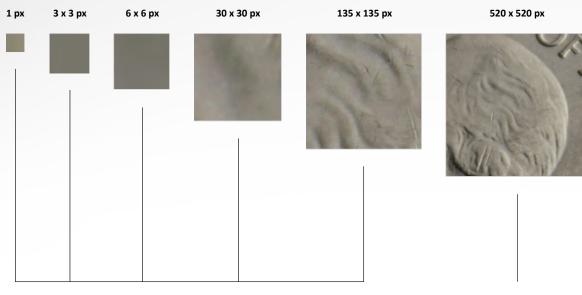
^{*} Fixed point measurement on glass. Ra average height variation for 1,200 points (100 sampling).


HOW IT WORKS

Chromatic Light Technology operates via a process that utilizes white light and a series of spherochromatic lenses. The spherochromatic lenses split the white light into individual wavelengths with unique vertical focal points (vertical distance from surface or height).

All wavelengths and their corresponding heights make up the height range measurement scale of a sensor.

The wavelength with the highest intensity will be detected by the spectrometer which processes the wavelength's associated height. During a full raster scan, this process takes a fraction of a second and produces an accurate height map of the surface of interest.



NO COMPLEX ALGORITHMS

NO DATA STITCHING WITHIN X-Y STAGE TRAVEL

THE PROBLEM WITH OTHER TECHNIQUES

LATERAL RESOLUTION VS LATERAL ACCURACY

IRERTY GON WE TRUSTE DOLLAR DOLLAR

NOT ENOUGH DATA TO CALCULATE FOCUS

NO PRACTICAL USE

PIXEL SIZE RESOLUTION: 2nm

THE SMALLEST INCREMENT FOR ANY PRACTICAL USE

EFFECTIVE ACCURACY: 1040 nm

THEM

Camera Pixel Size or **Display Resolution** is often defined as **lateral resolution** to impress clients. Instruments that use camera pixel-based technology require complex algorithms to determine the focal point of the instrument which is problematic for complex surfaces.

Chromatic Light provides **lateral accuracy** which is determined by physics and is directly related to the spot size of the chromatic light source of the optical sensor.

LASER SCANNING CONFOCAL MICROSCOPE

CHROMATIC LIGHT OPTICAL SENSOR

HEALTH HAZARD

Exposure to laser light reflectivity

INCONSISTENT LASER LIGHT WAVELENGTH

Inconsistencies in wavelength during scanning affect accuracy of results

DECEPTIVE 'DISPLAY RESOLUTION'

Lateral & height accuracy are fixed by the objective lens making 'Display Resolution' insignificant

COMPLEX ALGORITHMS

Alpha blending algorithms stitch collected data layer by layer, grounding accuracy on complex calculations

STITCHING REQUIRED

Objective lenses have limited fixed fields of view Stitching of larger areas compromises accuracy of the scan

50x SLOWER

Data acquisition speed up to 7.9 KHz

SAFE WHITE LIGHT

No need for protective wear

UNIFORM & BROAD WHITE LIGHT SPECTRUM

Changes in wavelength are the data being collected

INDEPENDENT LATERAL & HEIGHT ACCURACY

Lateral & height accuracy can be mixed and matched to meet a broad range of scanning requirements

NO ALGORITHMS

Physical wavelength reflected from the surface is measured directly for an accurate representative height map

NO STITCHING

Data points are collected continuously providing the same level of accuracy for both small and large areas

50x FASTER

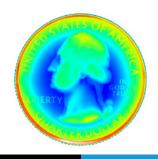
Data acquisition speed up to 384 KHz

LATERAL ACCURACY

For 50x objective (370 x 277 μm)

- ± 2% of measuring value
- ± 2% x 370 μm
- ≈ 15 µm

w/ stitching algorithms >> 15 μm


Step size:

= 5 µm

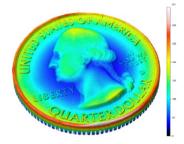
3x BETTER LATERAL ACCURACY

HEIGHT ACCURACY

- $\approx 0.2 + L/100 \mu m$ $\approx 0.2 + 950/100 \mu m$
- ≈ 9.7 µm

950 µm range

≈ 0.6 µm


16x BETTER HEIGHT ACCURACY

AREA TESTED

STITCHING REQUIRED

scans (25 x 25 mm) 25 000 μ m / 370 μ m x 25 000 μ m / 277 μ m 68 x 91

= 6188 scans

NO STITCHING

Consistent accuracy across any measurement size

1 SCAN

TEST TIME

6 sec per scan

- + 4 sec displacement & stitching
- = 10 sec/scan x 6188 scans
- = **61860 seconds** (≈ 17 hours)

Scan time (25 x 25 mm)

= 29.6 seconds

2090x FASTER

NANOVEA Jr25 OPTICAL PROFILER

GRENOBLE - FRANCE

Tel: +33 (0)4 76 56 16 17

Email: contact@microworld.eu

www.microworld.eu

Also available in other configurations

COMPACT

HIGH SPEED

STANDARD

LARGE AREA

ZERO NOISE

